All About Morse-Smale Complexes

What is a Morse-Smale Complex?
Simplification: cancellations in the complex.
An algorithm to compute for 2D PL data.
A discrete algorithm for 3D+ data.

Gradient Vector Field

. The vector field given by the gradient vectors of
a scalar function is the gradient vector field
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Critical points in GVF - 1D

« Critical points where gradient vanishes

Viip)=0
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Critical points on a 1d domain

Gradient Vectors

. The gradient of a differentiable scalar function f
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« Direction of steepest ascent
- perpendicular to contours
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Critical points in GVF

« Critical points where gradient vanishes

Vi(p)=0

Critical points in GVF - 2D

« Critical points where gradient vanishes
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Critical points on a 2d domain



Critical points in GVF - 3D Integral Lines

« Critical points where gradient vanishes . Integral Lines
v 0 - Agrees with the gradient at every point on line
fp) = ~ HeRgepirenadgrpaign ower and upper

« These form boundaries where gradient is zero

Regular Minimum 1-Saddle 2-Saddle Maximum
Index 0 Index 1 Index 2 Index 3

Critical points on a 3d domain

Properties of Integral Lines Ascending/Descending Manifolds
\ \
. Integral Lines « Ascending/Descending Manifolds
- DO NOT CROSS - Associated with a critical point p
- Are perpendiculgr to contours evgrywhere_ Ascending / unstable Descending / stable
- Cover all non-critical points in entire domain The.cofection ofpoits n integrl The callection of poigts n interal
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Ascending manifolds of f are descending manifolds of -f

Ascending manifolds form a cell complex
- boundary of ascending manifolds are lower dim asc manifolds
- two ascending manifolds do not intersect
- ascending manifolds partition M

Descending manifolds form a dual cell complex

Ascending/Descending Manifolds Ascending/Descending Manifolds
\ \ \
« Ascending/Descending Manifolds Descending Manifolds Ascending Manifolds
D(p) ={p}U { x| x € I, dest(l) = p} Alp) = {ptu { x| x e, orig(/) = p}
Ascending / unstable Descending / stable dim(D(p)) = index(p) dim(A(p)) = d — index(p)
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Morse Complex Morse-Smale function
\ \

. Asgel?dlng/ IDescen(_jl_ng I\]{Iorse Complex « A Morse-Smale function is a Morse function
- Cell complex — partition of space where ascending and descending manifolds
Ascending / unstable Descending / stable intersect 0n|y transversa”y

transverse

not
transverse
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Images from wikipedia

Morse Complex Morse Complex

Ascending

Ascending

Is this function Morse-Smale?
NON-TRANSVERSAL

Is this function Morse-Smale?

intersection!
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Morse-Smale function Morse-Smale complex
\
. Transversal intersections: « Given a Morse-Smale function
- Practically we say that . The cell complex formed by the intersection of

the ascending and descending manifolds is the

« In 2d ascending/descending 1-manifolds
Morse-Smale complex

cross at a point
. In 3d ascending/descending 2-manifolds
cross along arcs

« Can perturb a Morse function to make it Morse-
Smale



Morse-Smale complex Morse-Smale complex
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1D domain 1D domain

Morse-Smale complex Morse-Smale complex
\ \

A 2D domain
O minimum
@ maximum

1D domain
Arcs Nodes
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Morse-Smale complex Morse-Smale complex
\ \

2D domain 2D domain
Quad Arc  Node
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Morse-Smale complex Morse-Smale complex
\ \

« Properties of cells

3D domain
S - What do contours look like?
@ 2-saaae Cells of dimension i connect
0 r-suge. OTtiCAl points  with index that - Can you extract the Morse complexes?
differ by i.
O Minimum - Can you extract the Contour Trees?

- What is wrong with the definition:

« A cell of the Morse-Smale complex is composed of the
Crystal Quad  Arc  Node integral lines that share a common origin and

destination?
B

)

A Simple Example

A Simple Example A Simple Example




A Simple Example Simplification
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Cancellations Cancellations — how does it look?

« What happens to the complex?
- Cells are extended
- Cells merge
- Arcs merge
- Arcs are deleted
- Nodes are removed

Cancellations — a general definition Cancellations — 2D case
\ \
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» Combinatorial change . For the special case of 2D, a cancellation is
- Lower neighbors of the upper node are connected the merging of an extremum-saddle-
to upper neighbors of the lower node extremum

- All the arcs connected to u and / are removed
- u and [ are removed



Cancellations — 3D case Computing the 2d MS complex

\ \ \
. Why don't we just integrate from every point?

« Saddle-Extremum cancellations just as in 2D - Gradient descent = '

. 1Saddle-2Saddle cancellations

Computing the 2d MS complex Algorithm 1 — 2D MS complex
\ \ \
. Crossir_lg integral lines! « Edelsbrunner et al. Hierarchical Morse Complexes for
- Consistency — want quads Piecewise Linear 2-Manifolds

- What do you do with degeneracies?
« Flat regions
« multi-saddles

- Input: a scalar function on a simplicial 2-manifold mesh
« Triangles, edges, vertices

- Output: the Quasi-Morse-Smale complex
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Algorithm 1 — 2D MS complex

. 2-Stage Combinatorial algorithm

« (0) identify all critical points

« (1) trace descending paths from saddles

« (2) trace ascending paths from saddles, not
allowing crosses of descending lines




A Simple Example

Algorithm 1 — 2D MS complex

\
« (0) identify all critical points
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Algorithm 1 — 2D MS complex

\
« (1) trace descending paths from saddles
- Extend paths along steepest downward edge

© O X
saddle monkey saddle

maximum regular

% ﬁ? Merging paths are legal — represent a split between paths
ONCE THINGS MERGE THEY WILL NEVER SPLIT!!!!

Algorithm 1 — 2D MS complex

|
« (2) trace ascending paths from saddles
- Must be careful not to cross descending lines!!!!
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monkey saddle

maximum regular saddle
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A Simple Example

A Simple Example

Algorithm 1 — 2D MS complex

« Results
- Combinatorial method
- Handles degeneracies

- Care has to be taken i
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Algorithm 3 — Discrete MS complex

. Simple, generic, applicable to any dimension

. Based on discrete Morse theory:

R. Forman. A users guide to discrete Morse theory. In Proc. of the 2001 Internat. Conf. on
Formal Power Series and Algebraic Combinatorics, A special volume of Advances in Applied
Mathematics, page 48, 2001.

T. Lewiner. Constructing discrete Morse functions. Master’s thesis, Department of Mathematics,
PUC-Rio, 2002.

Algorithm 2 — 3D MS complex

« Why is simple extension of 2D ideas difficult?
— Trace descending manifolds
* Arcs and surfaces from saddles

— Trace ascending manifolds, keeping them
separate from existing descending manifolds

H. J. Harer, V. jan and V. i. M Smals for pi ise linear 3
inProc. 19th Ann. Sympos. Comput. Geom. 2003", 361-370.

Continuous tﬁ discrete Morse
theory

Continuous Case Discrete Case
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Morse function Discrete samples



Continuous tﬁ discrete Morse Continuous tﬁ discrete Morse
theory theory

Continuous Case

Morse function &/

Continuous gradient

Q

Discrete Case

Discrete samples =~
Discrete gradient vectors

— [

PaJ 2 1 tcgllg\pgg\enga??”ﬁs the tail

Continuous tﬁ discrete Morse
theory

Continuous Case

Morse function
Continuous gradient

Discrete Case

Discrete samples =~
Discrete gradient vectors
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Continuous tﬁ discrete Morse
theory

Continuous Case

Morse function
Continuous gradient
Integral lines
Critical points

Maximum

Minimum  Saddle

Discrete Case
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Discrete samples \
Discrete gradient vectors
Gradient paths
Critical cells
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Unpaired cells in the discrete gradient
Index = dimension of the cell

quad

edge vertex

C [ i

Jaces : cells in the closure of a

one
co-facet : co-face of a with dimension
different by one

co-faces : cells whose closure contain o
facet : face of a with dimension different by

a(d 1) ell with a d-cell as the tail
head agra en arrow

Continuous tﬁ discrete Morse
theory

Continuous Case
a\\{

|
Morse function /

Continuous gradient
Integral lines

Discrete Case
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Discrete samples
Discrete gradient vectors
Gradient paths
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A sequence of gradient vectors

Continuous tﬁ discrete Morse
theory

Continuous Case

Morse function S
Continuous gradient
Integral lines
Crmcalgomts
Morse-Smale Complex

A cell consists of Intgg({al {mes sharing
a common origin and destination

Discrete Case

Discrete samples 5
Discrete gradient vectors
Gradient paths

Critical cells
Morse-Smale Complex

mcell consists of the sum of&)aths
g common origin an
estln tion



Continuous tﬁ discrete Morse
theory

Algorithm 3 — Discrete MS complex

Discrete Case
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Continuous Case

Morse function Discrete samples
Continuous gradient Discrete gradient vectors
Integral lines Gradient paths

Critical points Critical cells
Morse-Smale Complex Morse-Smale Complex

omputing the discrete
rg eln on a rlnes%

. Construct a discrete gradient vector field
. Trace ascending and descending manifolds

omputing the discrete
rg eln on a rlnes%

« Given a mesh M with scalar valued defined at
vertices

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scalar valued defined at
vertices

+ Assign a value to every cell

Fla)=MAX{c:c<a}+¢

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scglar valued defined at
vertices

. Createsqr dient ?rrows in direction of
steepest descen

Fori=0,....,d
While not all i-cells have been marked
lowest = Lowest_Unmarked_iCell()
If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else
Set_Critical(lowest)

* Given a mesh M with scglar valued defined at
vertices

. Createsqr dient ?rrows in direction of

steepe escen

_________
' Fori=0,..,dj=
= = = “\While Rot all i-cells have been marked
lowest = Lowest_Unmarked_iCell()
If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else
Set_Critical(lowest)



omputing the discrete
rg eln on a rlnes%

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scglar valued defined at
vertices

. Createsqr dient ?rrows in direction of
steepest descen

Foriz0 e dls 0 o o o o o o =
While not all j-cells have been marked |
lowest = Lowest_Unmarked_iCell() !

H Gan PairHowesty — = = = = = = = 4
Pair_With_Steepest_Descent_cofacet(lowest)
Else

Set_Critical(lowest)

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scglar valued defined at
vertices () @) )

. Createsqr dient ?rrows in direction of
steepest descen

Fori=0,....,d | = 0
While not all i-cells have been marked
fowest= Lowest—_Unmarked-iCelK)
If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else
Set_Critical(lowest)

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scglar valued defined at
vertices ®) @) )

Can pair a with g if

a is only unmarked facet
of B and f(a) < f(B)

. Createsqr dient
steepest descen

Fori=0, ....,di= 0
While not all i-cells
rowest= Lowes
If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else
Set_Critical(lowest)

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scglar valued defined at
vertices ®) @) )

. Createsqr dient ?rrows in direction of
steepest descen

Fori=0,....,d | = 0
While not all i-cells have been marked
fowest= Lowest—_Unmarked-iCelK)
If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else
Set_Critical(lowest)

omputing the discrete
rg eln on a rlnes%

* Given a mesh M with scglar valued defined at
vertices

. Createsqr dient ?rrows in direction of
steepest descen

Fori=0,....,d | = 0
While not all i-cells have been marked
lowest = Lowest_Unmarked_iCell()
If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else

=)  Set Critical(lowest)

. leen a mesh M with scqlar valued defined at
ertices ®) @)

Createsqr dient ?rrows in direction of
steepest descen

Fori=0,....,d | = 0
While not all i-cells have been marked
lowest = Lowest_Unmarked_iCell()
=) If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
Else
Set_Critical(lowest)



omg ting the discr%te Comg ting the discr%te
radient on a mes gradienton a mes

* Given a mesh M with scglar valued defined at * Given a mesh M vyith scqlar alued defined at
vertices vertices

. Createsqr dient ?rrows in direction of . Createsqr dient ?rrows in direction of
st eepe escen st eepe escen
Fori=0,...,df=10 Fori=0,...,df=0
While not all i-cells have been marked While en marked
lowest = Lowest_Unmarked_iCell() ed_iCell()
If Can_Pair (lowest) If Fan_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest) air_With_Steepest_D nt_cofacet(lowest)
Ise El

Set_Critical(lowest)

omg ting the discr%te Comg ting the discr%te
radient on a mes gradient on a mes

* Given a mesh M vyith scqlar alued defined at
vertices

. Createsqr dient ?rrows in direction of . Createsqr dient ?rrows in direction of
st eepe escen st eepe escen
'Forl 0,..,d VI= Forim@,=—d-—-+=4-------
~ = WHII& riot alli-Gells have been marked 1 While not all i-cells have been marked
lowest = Lowest_Unmarked_iCell() 1 lowest = Lowest_Unmarked_iCell() ,
If Can_Pair (lowest) Tt Can Pair(lowesh) — —~ ~ -~~~
Pair_With_Steepest_Descent_cofacet(lowest) Pair_With_Steepest_Descent_cofacet(lowest)
Else Else
Set_Critical(lowest) Set_Critical(lowest)
omg ting the dlscr%te Comg ting the dlscr%te
raaient on a mes graaient on a mes
« Given a mesh M with scalar valued defined at « Given a mesh M with scalar valued defined at
vertices 4 vertices 4

. Createsqr dient ?rrows in direction of Createsqr dient ?rrows in direction of

st eepe escen st eepe escen
Fori=0,....,d i=1 Fori=0,....,d i=2
: en marked While not all i-cells have been marked
_iCell() lowest = Lowest_Unmarked_iCell()
Prair (lowest) If Can_Pair (lowest)
ir_With_Steepest_Descegt_cofacet(lowest) Pair_With_Steepest_Descent_cofacet(lowest)
Else

Set_Critical(lowest)



C ting the discret
‘gradienton a mesh

C ting the discret
‘gradienton a mesh

Now we have a discrete gradient!

The Morse-Smale complex is given by
simply tracing gradient paths

- Arﬁs are paths that start and end at critical
cells

References

Now we have a discrete gradient!

The Morse-Smale complex is given by
simply tracing gradient paths
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